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Abstract

Few problems have created the combined interest of so many unrelated
areas as the evolution of cooperation. As a result, several mechanisms
have been identified to work as catalyzers of cooperative behavior. Yet,
these studies, mostly grounded on evolutionary dynamics and game the-
ory, have neglected the important role played by intention recognition in
behavioral evolution. Here we address explicitly this issue, characterizing
the dynamics emerging from a population of intention recognizers. We
derive a Bayesian Network model for intention recognition in the context
of repeated social dilemmas and evolutionary game theory, by assessing
the internal dynamics of trust between intention recognizers and their
opponents. Intention recognizers are then able to predict the next move of
their opponents based on past direct interactions, which, in turn, enables
them to prevail over the most famous strategies of repeated dilemmas of
cooperation, even in presence of noise. Overall, our framework offers new
insights on the complexity and beauty of behavioral evolution driven by
elementary forms of cognition.

Keywords: Evolution of Cooperation, Intention Recognition, Bayesian
Networks, Evolutionary Game Theory.
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1 Introduction

Intention recognition can be found abundantly in many kinds of interactions and
communications, not only in Human but also many other species (Tomasello,
2008). The knowledge about intention of others in a situation could enable
to plan in advance, either to secure a successful cooperation or to deal with
potential hostile behaviours (van Hees and Roy, 2008; Roy, 2009). Given the
advantage of knowing the intentions of others and the abundance of intention
recognition among different species, it is clear that intention recognition should
be taken into account when studying or modeling collective behavior. This issue
becomes even more relevant when the achievement of a goal by an individual
does not depend uniquely on its own actions, but also on the decisions and
actions of others, namely when individuals cooperate or have to coordinate their
actions to achieve a task, especially when the possibility of communication is
limited (Kraus, 1997; Heinze, 2003; Van Segbroeck et al., 2010). For instance,
in population-based artificial intelligence applications (Bonabeau et al., 1999;
Ampatzis et al., 2008; Gutierrez et al., 2009), such as collective robotics and
others, the inherent problem of lack of intention recognition due to the simplicity
of the agents is often solved by assuming homogeneous populations, in which
each agent has a perfect image of the other as a copy of their own self. Yet, the
problem remains in heterogeneous agent systems where it is likely that agents
speak different languages, have different designs or different levels of intelligence;
hence, intention recognition may be the only way agents understand each other
to secure successful cooperation or coordination among heterogeneous agents.
Moreover, in more realistic settings where deceiving may offer additional profits,
individuals often attempt to hide their real intentions and make others believe
in pretense ones (Robson, 1990; Tomasello, 2008; Skyrms, 2010; Pereira and
Han, 2011; Santos et al., 2011).

Intention recognition is defined, in general terms, as the process of becoming
aware of the intention of another agent and, more technically, as the problem
of inferring an agent’s intention through its actions and their effects on the
environment (Kautz and Allen, 1986; Charniak and Goldman, 1993; Heinze,
2003). For the recognition task, several issues can be raised grounded on the
eventual distinction between the model an agent creates about himself and the
one used to describe others, often addressed in the context of the “Theory of
Mind” theory, which neurologically reposes in part on “mirror neurons”, at
several cortical levels, as supporting evidence (Iacoboni et al., 2005; Rizzolatti
and Craighero, 2004; Nakahara and Miyashita, 2005). The problem of intention
recognition has been paid much attention in AI, Philosophy and Psychology for
several decades (Kautz and Allen, 1986; Charniak and Goldman, 1993; Bratman,
1987, 1999; Geib and Goldman, 2009). Whereas intention recognition has been
extensively studied in small scale interactive settings, there is an absolute lack
of modelling research with respect to large scale social contexts; namely the
evolutionary roles and aspects of intention recognition.

In this work, we study the role of intention recognition for one of the most
challenging but intriguing issues, traversing areas as diverse as Biology, Eco-
nomics, Artificial Intelligence, Political Science, or Psychology: the problem of
evolution of cooperation (Hardin, 1968; Axelrod, 1984; Sigmund, 2010). In its
simplest form, a cooperative act is metaphorically described as the act of paying
a cost to convey a benefit to someone else. If two players simultaneously decide
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to cooperate or not, the best possible response will be to try to receive the ben-
efit without paying the cost. In an evolutionary setting, we may also wonder
why would natural selection equip selfish individuals with altruistic tendencies
while it incites competition between individuals and thus apparently rewards
only selfish behavior? Several mechanisms responsible for promoting coopera-
tive behavior have been recently identified (Sigmund, 2010; Nowak, 2006). From
kin and group ties (West et al., 2007; Traulsen and Nowak, 2006), to different
forms of reciprocity (Nowak and Sigmund, 1992a; Imhof et al., 2005; Trivers,
1971; Pacheco et al., 2006; Nowak and Sigmund, 2005) and networked popu-
lations (Santos and Pacheco, 2005; Santos et al., 2006; Szabó and Fáth, 2007;
Santos et al., 2008; Lindgren and Nordahl, 1994), several aspects have been
shown to play an important role in the emergence of cooperation. Differently,
here we shall describe how cooperation may emerge from the interplay between
population dynamics and individuals’ cognitive abilities, namely the ability to
perform intention recognition.

Our study is carried out within the framework of Evolutionary Game Theory
(EGT) (Hofbauer and Sigmund, 1998). Here, individual success (or fitness) is
expressed in terms of the outcome of a 2-person game, which, in turn, is used by
individuals to copy others whenever these appear to be more successful. Com-
parative accumulated payoffs are used to update the population: more successful
individuals produce more offspring, which inherit their strategy. Equivalently,
the same process can be seen as if, instead of inheriting strategies, new individ-
uals adapt by copying strategies from acquaintances that did better. Overall,
this type of dynamics can be conveniently described as an ordinary differen-
tial equation – the replicator equation (Hofbauer and Sigmund, 1998)–, which
nicely describes any simple evolutionary process. This framework is however
more general one could initially foresee, as the ensuing dynamics may be also
shown to be equivalent to finite-action learning automata (Börgers et al., 1997;
Van Segbroeck et al., 2010), in which agents revise their strategies by means of
incipient reinforcement learning techniques (Narendra and Thathachar, 1989).

In this work we model intention recognition within the framework of repeated
interactions. In the context of direct reciprocity (Trivers, 1971) intention recog-
nition is being performed using the information about past direct interactions.
We study this issue using the repeated Prisoner’s Dilemma (PD), i.e., intentions
are inferred from past individual experiences. Naturally, the same principles
could be extended to cope with indirect information, as in indirect reciprocity
(Nowak and Sigmund, 2005; Pacheco et al., 2006; Ohtsuki and Iwasa, 2006).
This eventually introduces moral judgment and concern for individual reputa-
tion, which constitutes “per se” an important area where intention recognition
may play a pivotal role. Here, however, we shall concentrate on the simpler case
of intention recognition from past experiences.

Contrary to other approaches dealing with the integration of (direct or in-
direct) information about the past in individual decisions, e.g. in (Masuda and
Ohtsuki, 2009; Ohtsuki and Iwasa, 2006; Wang et al., 2008; Vukov et al., 2011),
intention recognition is performed using a Bayesian Network (BN) model. BNs
have proven to be one of the most successful approaches for intention recog-
nition (Charniak and Goldman, 1993; Tahboub, 2006; Pereira and Han, 2011;
Geib and Goldman, 2009). Their flexibility for representing probabilistic depen-
dencies as well as causal relations, and the efficiency of inference methods have
made them an extremely powerful tool for problem solving under uncertainty
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(Pearl, 1988, 2000), and appropriate to deal with several probabilistic as well as
causal dependencies occurring in intention recognition.

We derive a Bayesian Network model for intention recognition in the context
of social dilemmas, taking into account mutual trusts between the intention
recognizer and his opponent. Trusts are accumulated through past interactions,
assuming that intention recognizers have a memory. Greater memory sizes
enable to build longer-term mutual trusts, and therefore allow better tolerance
to the errors of intended actions. We study analytically the case of small memory
size, and experimentally the effect of having greater memory sizes. In addition,
we compare the performance of intention recognizers with the most famous
strategies of the repeated PD.

The repeated (or iterated) PD is usually known as a story of tit-for-tat
(TFT), which won both Axelrod’s tournaments (Axelrod, 1984; Axelrod and
Hamilton, 1981). TFT starts by cooperating, and does whatever the opponent
did in the previous round. It will cooperate if the opponent cooperated, and
will defect if the opponent defected. But if there are erroneous moves because
of noise (i.e. an intended move is wrongly performed with a given execution
error, referred here as “noise”), the performance of TFT declines, in two ways:
(i) it cannot correct errors and (ii) a population of TFT players is undermined
by random drift when AllC (always cooperate) mutants appear (which allows
exploiters to grow). Tit-for-tat is then advantageously replaced by generous tit-
for-tat (GTFT), a strategy that cooperates if the opponent cooperated in the
previous round, but sometimes cooperates even if the opponent defected (with
a fixed probability p > 0) (Nowak and Sigmund, 1992b). GTFT can correct
mistakes, but remains suffering the random drift; in addition, it deals with pure
defectors worse than TFT.

Subsequently, TFT and GTFT were replaced by win-stay-lose-shift (WSLS)
as the winning strategy chosen by evolution (Nowak and Sigmund, 1993). WSLS
repeats the previous move whenever it did well, but changes otherwise. WSLS
corrects mistakes better than GTFT and does not suffer random drift. However,
it is exploited seriously by pure defectors.

Here we show that our innovative intention recognition strategy (IR) can
correct mistakes even better than WSLS, and not be exploited by pure defectors.
We compare the performance of TFT, WSLS and IR under mutation-selection
dynamics in finite populations (Imhof et al., 2005; Hauert et al., 2007), in a
well-mixed population of pure cooperators (AllC), pure defectors (AllD) and,
additionally, of individuals of either of the above other three strategies, as well
as all these strategies together. The results show that IR performs best, in the
sense that populations spend more time in a homogenous state of IRs, even in
the presence of noise.

2 Materials and Methods

We consider a population of constant size N . At each evolution step, a random
pair of players are chosen to play with each other. The population consists of
pure cooperators, pure defectors plus either of TFT s or of WSLS s or of intention
recognizers who, being capable of recognizing another’s intention based on the
past interactions, seek the cooperators to cooperate with and to defect toward
detected defectors.
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2.1 Interaction between Individuals

Interactions are modeled as symmetric two-player games defined by the payoff
matrix ( C D

C R,R S, T
D T, S P, P

)
A player who chooses to cooperate (C) with someone who defects (D) receives
the sucker’s payoff S, whereas the defecting player gains the temptation to
defect, T . Mutual cooperation (resp., defection) yields the reward R (resp.,
punishment P) for both players. Depending on the ordering of these four pay-
offs, different social dilemmas arise (Macy and Flache, 2002; Santos et al., 2006;
Sigmund, 2010). Namely, in this work we are concerned with the Prisoner’s
Dilemma (PD), where T > R > P > S. In a single round, it is always best to
defect, but cooperation may be rewarded if the game is repeated. In repeated
PD, it is also required that mutual cooperation is preferred over an equal prob-
ability of unilateral cooperation and defection (2R > T + S); otherwise alter-
nating between cooperation and defection would lead to a higher payoff than
mutual cooperation. For convenience and a clear representation of results, we
later mostly use the Donation game (Sigmund, 2010)—a famous special case of
the PD—where T = b, R = b − c, P = 0, S = −c, satisfying that b > c > 0,
where b and c stand respectively for “benefit” and “cost” (of cooperation).

In a population of N individuals interacting via a repeated (or iterated) Pris-
oner’s dilemma, whenever two specific strategies are present in the population,
say A and B, the fitness of an individual with a strategy A in a population
with k As and (N − k) Bs can be written as

ΠA(k) =
1

r(N − 1)

r∑
j=1

[(k − 1)πA,A(j) + (N − k)πA,B(j)] (1)

where πA,A(j) (πA,B(j)) stands for the payoff obtained from a round j as a
result of their mutual behavior of an A strategist in an interaction with a A
(B) strategist (as specified by the payoff matrix above), and r is the total number
of rounds of the Prisoner’s dilemma. As usual, instead of considering a fixed
number of rounds, upon completion of each round, there is a probability w that
yet another round of the game will take place, resulting in an average number of
< r >= (1−w)−1 rounds per interaction (Sigmund, 2010). In the following, all
values of Π will be computed analytically. When this is not possible, we shall
use numerical simulations, as stated below.

2.2 Bayesian Networks

Definition 2.1 A Bayesian Network (BN) is a pair consisting of a directed
acyclic graph (DAG) whose nodes represent variables and missing edges encode
conditional independencies between the variables, and an associated probability
distribution satisfying the Markov assumption of conditional independence, say-
ing that variables are independent of non-descendants given their parents in the
graph (Pearl, 1988, 2000).

In a BN, associated with each node of its DAG is a specification of the distri-
bution of its variable, say A, conditioned on its parents in the graph (denoted
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oTrust (Tr) Intention (I) pastObs (O) 

Figure 1: Bayesian Network for Intention Recognition in Social Dilemmas. Pre-intentional
level has one node, oTrust (Tr), receives Boolean values, t (true) or f (false),
representing the other’s trust on us (the intention recognizers). Intentional level
has one node, Intention (I), receiving value C or D, corresponding to more co-
operative and more defective, respectively, in the past. It is causally affected by
oTrust. Activity level has one node, pastObs (O), causally affected by Intention
node. Its value is a pair (nC , nD) where nC and nD are the number of times the
recognized player cooperated and defected, respectively, in the recent M (memory
size) steps. pastObs is the only observed (evidence) node.

by pa(A))—i.e., P (A|pa(A)) is specified. If p(A) = ∅ (A is called root node), its
unconditional probability distribution, P (A), is specified. These distributions
are called Conditional Probability Distribution (CPD) of the BN.

The joint distribution of all node values can be determined as the product of
conditional probabilities of the value of each node on its parents P (X1, ..., XN ) =∏N
i=1 P (Xi|pa(Xi)), where V = {Xi|1 ≤ i ≤ N} is the set of nodes of the DAG.
Suppose there is a set of evidence nodes (i.e. their values are observed) in the

DAG, say O = {O1, ..., Om} ⊂ V . We can determine the conditional probability
distribution of a variable X given the observed value of evidence nodes by using
the conditional probability formula

P (X|O) =
P (X,O)
P (O)

=
P (X,O1, ..., Om)
P (O1, ..., Om)

(2)

where the numerator and denominator are computed by summing up the joint
probabilities over all absent variables with respect to V .

2.3 Intention Recognition in Social Dilemmas

In (Pereira and Han, 2011), a general BN model for intention recognition is pre-
sented and justified based on Heinze’s intentional model (Heinze, 2003; Tahboub,
2006). Basically, the BN consists of three layers: cause/reason nodes in the first
layer (called pre-intentional), connecting to intention nodes in the second one
(called intentional), in turn connecting to action nodes in the third (called ac-
tivity). Intuitively, the observed actions of an agent are causally affected by
his/her intentions, which are in turn causally affected by the causes/reasons for
which he committed to the intentions (Bratman, 1987, 1999). The interested
readers are referred to (Pereira and Han, 2011; Heinze, 2003; Tahboub, 2006)
for detailed discussions.

Based on this general model, we present an intention recognition model in the
context of the social dilemmas, taking into account the past direct interactions
(Figure 1). The model is described from the view of an intention recognizer
(denoted by I) with respect to a co-player (denoted by J ), whose intention (C
or D) is to be recognized. A player’s intentions here can be understood as the
characters or types of the player: how cooperative or defective he is in general
when playing with me. Saying that the co-player has intention C (resp., D)
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means that, in general, he intends to cooperate with me (resp., exploit or defect
towards me). Thus, if he has been cooperative in the past, it is likely he will
continue to cooperate in the current interaction.
J ’s intention in a given interaction is causally affected by the trust he holds

towards his opponent (I), which is accumulated over their past (observed) in-
teractions. J ’s intention in turn has given rise to his past actions. Let M > 0
be the memory size of intention recognizers, i.e. they can remember their moves
and their opponents’ moves in the last M rounds of interaction with any specific
players.

For this Bayesian Network, we need to determine the prior probability of
the node oTrust, i.e. P (Tr); the CPD table of node Intention—specifying the
conditional probability of J having an intention (C or D) given the trust he
holds towards his opponent (I), i.e. P (I|Tr); and the CPD table of the node
pastObs—specifying the conditional probability of the past observations given
J ’s intention (C or D), i.e. P (O|I).

To begin with, let nC(X ,Y) and nD(X ,Y) denote the numbers of times a
player X cooperated and defected, respectively, in the last M interactions with
another player Y. Note that nC(X ,Y)+nD(X ,Y) ≤M , and the equality occurs
only when the two players have interacted with each other at least M times.

Trust Distribution. The probability that J trusts I is given by how often
I cooperated with J . This can be written as

P (Tr = t) =
1
2

+
nC(I,J )− nD(I,J )

2M
(3)

It is easily seen that 0 ≤ P (Tr = t) ≤ 1, and P (Tr = t) = 0 (resp., 1) if I de-
fected (resp., cooperated) in all recent M interactions. These correspond to the
extremes that I lost all his/her trust (resp., gained complete trust) concerning
J . We further assume that, in the first interaction, the trust level is neutral:
P (Tr = t) = 1

2 .

Definition of P(I|Tr). We use the following CPD table

P (I = C|Tr = t) = P (I = D|Tr = f) = h

P (I = C|Tr = f) = P (I = D|Tr = t) = 1− h

where h is the probability the intention recognizer (I) thinks the co-player (J )
has intention C given that he (J ) completely trusts me (I).

As the intention recognizers are cooperative, i.e. they seek the cooperators to
cooperate with and generously start by cooperating with everybody, we assume
h ≥ 0.5. This probability reflects the intention recognizers’ optimistic level—
assumed fixed for their entire life cycle (generation).

Definition of P(O|I). The conditional probability of the past observations
about the co-player given his intention. It can be interpreted as how trustful or
cooperative the intention recognizer (I) thinks his co-player (J ) is, and can be
defined as how often J cooperated with I in an interaction. It can be given as
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follows

P (O = (n1, n2)|I = C) =
1
2

+
n1 − n2

2M

P (O = (n1, n2)|I = D) =
1
2

+
n2 − n1

2M

(4)

where n1 = nC(J , I) and n2 = nD(J , I).
In a nutshell, the intention recognition model presented takes into account

the past direct interactions, in terms of mutual trusts, which are encoded into
a Bayesian Network.

Intention Recognizer. In an interaction, the probabilities of the co-player
having intention C and having intention D, given his M recent past actions
o = (nC , nD), are computed using Eq. (2)

p(I = C|O = o) =
p(I = C,O = o)

p(O = o)

p(I = D|O = o) =
p(I = D,O = o)

p(O = o)

(5)

The intention recognizer plays C if he recognizes that the co-player is more
cooperative (thus more likely to play C than to play D), i.e. p(I = C|O =
o) ≥ p(I = D|O = o). Otherwise, he plays D. Players using this intention
recognition strategy are henceforth referred to as IR players.

With the trust functions given in Eq. (3) and (4), we obtain that the inten-
tion recognizer (I) cooperates with his co-player (J ) iff (see Appendix A for
details)

∆ = sP +Q ≥ 0 (6)

where s = 2h − 1 (0 ≤ s ≤ 1); P = nC(I,J ) − nD(I,J ) and Q = nC(J , I) −
nD(J , I).

2.4 Evolutionary Dynamics

The accumulated payoff from all interactions (see Eq. (1)) emulates the indi-
vidual fitness or social success and the most successful individuals will tend to
be imitated by others, implementing a simple form of social learning (Szabó and
Toke, 1998; Traulsen et al., 2006; Sigmund, 2010). Any player (including IR)
can change its strategy by adopting another players strategy with a probability
defined by the Fermi distribution below. If a strategy has a higher (average)
payoff or fitness than another, it tends to be imitated more by the other. The
IR strategy in general has higher fitness than all others, thus it tends to by
imitated by them, thereby dominating the population most of the time.

A strategy update event is defined in the following way, corresponding to
the so-called pairwise comparison (Szabó and Toke, 1998; Traulsen et al., 2006).
At each time-step, one individual i with a fitness fi is randomly chosen for
behavioral revision. i will adopt the strategy of a randomly chosen individual j
with fitness fj with a probability given by the Fermi function (from statistical
physics)

p(fi, fj) =
(

1 + e−β(fj−fi)
)−1

9



where the quantity β, which in physics corresponds to an inverse temperature,
controls the intensity of selection. When β = 0 we obtain the limit of neutral
drift, and with the increasing of β one enhances the role played by the game
payoff in the individual fitness, and behavioral evolution (Traulsen et al., 2006,
2007).

In the absence of mutations, the end states of evolution are inevitably
monomorphic, as a result of the stochastic nature of the evolutionary dynamics
and update rule. As we are interested in a global analysis of the population
dynamics with multiple strategies, we further assume that with a small proba-
bility µ individuals switch to a randomly chosen strategy, freely exploring the
space of possible behaviors. By introducing a small probability of mutation
or exploration, the eventual appearance of a single mutant in a monomorphic
population, this mutant will fixate or will become extinct long before the oc-
currence of another mutation and, for this reason, the population will spend
all of its time with a maximum of two strategies present simultaneously (Fu-
denberg and Imhof, 2005; Imhof et al., 2005; Hauert et al., 2007; Santos et al.,
2011). This allows one to describe the evolutionary dynamics of our population
in terms of a reduced Markov Chain of a size equal to the number of different
strategies, where each state represents a possible monomorphic end-state of the
population associated with a given strategy, and the transitions between states
are defined by the fixation probabilities of a single mutant of one strategy in
a population of individuals who adopt another strategy. The resulting station-
ary distribution characterizes the average time the population spends in each of
these monomorphic states, and can be computed analytically (Karlin and Tay-
lor, 1975; Fudenberg and Imhof, 2005; Imhof et al., 2005; Hauert et al., 2007;
Santos et al., 2011) (see below).

In the presence of two strategies the payoffs of each are given by Eq. (1),
whereas the probability to change the number k of individuals with a strategy
A (by ± one in each time step) in a population of (N − k) B-strategists is

T±(k) =
N − k
N

k

N

[
1 + e∓β[ΠA(k)−ΠB(k)]

]−1

The fixation probability of a single mutant with a strategy A in a population
of (N − 1) Bs is given by (Traulsen et al., 2006)

ρB,A =

N−1∑
i=0

i∏
j=1

λj

−1

(7)

where λj = T−(j)/T+(j).
In the limit of neutral selection (β = 0), λj = 1. Thus, ρB,A = 1/N .

Considering a set {1, ..., nS} of different strategies, these fixation probabilities
determine a transition matrix [Tij ]i,j=1,...,nS

, with Tii = 1−
∑nS

k=1,k 6=i ρk,i/(nS−
1) and Tij,j 6=i = ρji/(nS − 1), of a Markov Chain. The normalized eigenvector
associated with the eigenvalue 1 of the transposed of M provides the stationary
distribution described above (Karlin and Taylor, 1975; Fudenberg and Imhof,
2005; Imhof et al., 2005; Hauert et al., 2007; Santos et al., 2011), describing the
relative time the population spends adopting each of the strategies.
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Figure 2: Transition probabilities and stationary distributions (in percentage), computed
analitically for two distinct sets of parameters. We consider a population of AllC s,
AllDs and either WSLSs, TFT s or IRs (M = 2). The black arrows are only shown
for the transition directions that are rather more likely than neural. The strongest
transition is from AllC to AllD. The transition from AllD to IR is stronger than to
TFT. This is reversed in case of WSLS, where the most probable transition occurs
from WSLS to AllD. For slow intensity of selection β (panel a), the transitions
between AllC and IR and AllC and TFT are near neutral, and for strong selection
(panel b), there is a transition from TFT to AllC, which is stronger than from IR
to AllC. Also, the greater β, the stronger the transition from AllC to AllD and
to WSLS. The calculations in both cases are made with N = 100 and ω = 0.9;
ρN = 1/N denotes the neutral fixation.

3 Results

We shall start by considering a finite population consisting of AllC, AllD and
IR players. It is easily seen that in the absence of noise, a player adopting a
IR strategy performs similarly to a TFT player, i.e. always cooperates with an
AllC, always defects with AllD after cooperating in the first round, and always
cooperate amongst themselves. In the sequel we study the performance of IR
in the presence of noise, and compare with TFT and WSLS. First we study
analytically the case of memory two, i.e. M = 2.

3.1 Evolution of short-memory intention recognizers

In the presence of noise, let us assume that an intended action (C or D) can fail
with probability ε ∈ [0, 1]. We obtain the following payoff matrix for AllC, AllD
and IR, where all terms of order O(ε2) have been ignored (see Appendix B.1)
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Figure 3: Percentage of time spent at AllC, AllD and either WSLS, TFT or IR. We compare
IR with WSLS and TFT when interacting with AllC s and AllDs. We consider
different selection intensities β (0.01, 0,1 and 1), noise levels ε (0.01 and 0.1) and
PD benefit-to-cost ratios b/c (2 and 3). In all cases, IR is better than TFT and
WSLS. In a population of AllC s, AllDs and IRs, the system spends more time in
homogeneous state of IRs, especially when selection is strong. TFT and WSLS
perform poorly at strong selection intensities, as the population spends most of the
time at AllDs. The calculations in all cases are made with N = 100 and ω = 0.9.

12



AllC AllD WSLS TFT IR
β=0.01 β=0.1 β=1

β=0.01 β=0.1 β=1

ϵ 
= 

0.
01

ϵ 
= 

0.
1

Figure 4: Stationary distribution in a population of five possible strategies AllC, AllD,
WSLS, TFT and IR (M = 2). The population spends most of the time in a
homogeneous state of IRs. WSLS also performs well in this 5-strategy setting,
reconfirming that it needs other catalyzers such as TFT to perform well. On the
contrary, these results show that IR performs well in either case (the other setting
in Figure 3). The calculations in all cases are made with N = 100, b/c = 3, ω = 0.9
and h = 0.6. The average fitness of IR, WSLS and TFT players interacting with
each other are obtained by averaging over 107 simulated interactions.



(b− c)(1− ε) −c+ (b+ c)ε
c(ω−1+ε(1−4ω+ω2))

1−ω+3εω−εω2

+
b(ω−1+2ε(1−3ω+ω2))

1−ω+3εω−εω2

b− bε− cε (b− c)ε ε(b(2+ω−ω2)−c)
1−εω

b(1−ε−εω2)−c(1−ε(2−ω+ω2))
1−εω2

ε(b−c(2+ω−ω2−ω3))
1−εω2(1+ω)

(b−c)(1+ε(−2+4ω+ω2+ω3))
1+εω(3+ω+ω2)


Let A(X,Y ) be the payoff of strategist X when playing against strategist Y .

We can show that (Appendix B.2)

A(IR, IR) > A(WSLS,WSLS) > A(TFT, TFT )
A(AllD, IR) < A(AllD, TFT ) < A(AllD,WSLS)
A(IR,AllD) > A(TFT,AllD) > A(WSLS,AllD)

A(AllC,WSLS) < A(AllC, TFT ) < A(AllC, IR)
A(WSLS,AllC) > A(TFT,AllC) > A(IR,AllC)

The first inequality implies that IR deals with noise better than TFT and WSLS,
when interacting with individuals alike. As a result, a homogeneous population
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Figure 5: Plot of probabilities of reactions computed numerically for IRs of different memory
sizes (M = 2, 6, 10), and analogous quantities for WSLS and TFT strategists, as
a function of the level of noise. a) Probability of defection of IR, TFT and WSLS
strategists when playing with themselves. The probability of defection between IRs
decreases with the memory size. b) Probability that each of the three strategies—
IR, TFT and WSLS—cooperates with a AllD. The probability that IR cooperates
with AllD decreases when memory size increases. c) Probability that a IR, TFT
and WSLS player defects with a AllC. The probability that IR defects with AllC
decreases when memory size increases. In all cases, ω = 0.9, h = 0.6 and the
probabilities are obtained by averaging over 107 simulated interactions.

of IRs has a higher level of cooperation (thus, greater average payoff) than the
ones of WSLS s and TFT s 1. The next two inequalities imply that IR deals
with AllD better than TFT, which is in turn better than WSLS. The fixation
probability of an IR taking over a population of AllD is greater than those of
TFT and WSLS (Figure 2). Finally, the last two inequalities imply that IR is
more cooperative to AllC (i.e. it is more tolerant of noise originated by AllC ).

Figures 2 and 3 show a comparison among WSLS, TFT or IR in terms of
the percentage of time the population spends at their homogenous state, in a
setting of either strategy and AllC and AllD individuals. In all cases, IR is
better than TFT and WSLS. In a population of AllC s, AllDs and IRs, the
population spends more time in the homogeneous state of IRs, especially when
the intensity of selection is strong. TFT and WSLS poorly perform at strong
selection intensities—the population spends most of the time at AllDs. The
poor performance of WSLS is not surprising, as WSLS needs TFT players as
a catalyst to perform well, as discussed in (Sigmund, 2010).

Figure 4 shows the results for the setting where all the five strategies AllC,
AllD, TFT, WSLS and IR are in the population. Again, the population will be
most likely found in the homogeneous state of IRs. WSLS also performs well
in this setting (since TFT s are present).

In short, in these two commonly used settings, IR always outperforms TFT
and WSLS. The population spends more time in the homogeneous state of IRs.
Furthermore, since a population of IRs is highly cooperative, it is clear that
the introduction of intention recognition significantly increases the cooperation
level of the population, leading to a greater social welfare.

1Recall that a homogeneous population or homogeneous state is a population with just a
single strategy, i.e., all individuals of the population adopt that strategy.
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3.2 The role of memory size

The impressive results obtained in the previous section addressed the evolution-
ary chances of very short-memory intention recognizers. Yet, it is reasonable
to suppose that individuals may record a larger number of rounds and use it
at their profit. As shown in Figure 5a, a greater memory size enables a better
tolerance to noise. It allows the build-up of long-term mutual trusts, which
enables a better assessment of errors. The intention recognizers become more
generous (see Fig. 5a) and, above all, more tolerant to other players’ errors. As
a result, a homogenous population of large memory IRs can reach closer to the
state of perfect cooperation, even in the presence of noise.

In addition, they are more resilient to change opinion about untrustworthy
players. Namely, the greater M the smaller probability that an IR defects with
another IR and with an AllC (see Fig. 5c), and the smaller the probability of
cooperating with AllD (see Fig. 5b).

3.3 The role of IRs optimism and their tolerance to noise

In the following, we study the relation of the optimistic level h of an IR with
his/her noise tolerance, towards a cooperative and towards a defective co-player.
For simplicity, we consider the following two cases.

First of all, suppose that at the m-th round, we have P = P0 > 0 and
Q = Q0 > 0 (i.e. the players were cooperative), and the co-player will constantly
defect (with probability 1 − ε). Let k be the expected number of rounds IR is
tolerant to his co-player’s defection. Clearly, k ≤M (see Appendix A).

If m ≥ M , from Eq. (6) and the fact that IR’s memory size is M we have
that k must satisfy the following equation

sPk +Qk = 0 (8)

where Pi+1 = Pi + (1 − ε − Pi/M) and Qi+1 = Qi − (1 − ε + Qi/M) for all
1 ≤ i ≤ k − 1. This can be explained as follows. With probability (1 − ε), IR
cooperates, thus the value of Pi is increased by (1− ε). But since m ≥ M , the
value of Pi is also decreased, on average, by Pi/M (one round is “forgotten”).
A similar argument can be used for Qi.

By a simple computation2 we obtain that (8) is equivalent to(
M − 1
M

)k
=

M(1− s)(1− ε)
M(1− s)(1− ε) + sP0 +Q0

=
1

1 + sP0+Q0
M(1−s)(1−ε)

The right-hand side is clearly a decreasing function of s. Thus, k is an increasing
function of s. Now if m < M , by putting k = k1 + M −m and applying the
same method we can show that k1 is also an increasing function of s.

In short, in both cases k is an increasing function of s (hence, also of h).
It means that the more optimistic the IR is (i.e. the greater h), the more
tolerant/generous he is towards a cooperative co-player. It also means that
the more optimistic a IR, he might become more generous to defective players
if errors occur more frequently at the beginning of their interaction (defective
players show up to be cooperative).

2Consider the sequence Xi, where Xi = sPi + Qi. It satisfies the recursive equation
Xi+1 = M−1

M
Xi + (1 − s)(1 − ε).
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Similarly, let us consider the case where at some round, both players were
defective, i.e. P0 < 0 and Q0 < 0, and the co-player starts cooperating (either
by mistakes or because the co-player is actually a cooperative one). The number
of rounds that IR keeps on defecting while the co-player cooperates, by using the
same method, can be shown to be an increasing function of h. Hence, the more
optimistic a IR is, the less generous he is towards a defective player. However, it
also means that the more optimistic a IR is, the less generous he might become
to cooperative players if errors occur more frequently at the beginning of their
interaction (cooperative players show up to be defective).

In short, when errors are not frequent at the beginning, a more optimistic
IR becomes more tolerant to noise, since he/she is more generous towards co-
operative players and less so to defective ones. On the other hand, if errors
are frequent at the beginning (cooperative players show up to be defective, and
vice-versa, defective players show up to be cooperative), the more optimistic
a IR is, more rounds he/she would take to recognize correctly the opponents’
intentions. Overall, this suggests that, ideally, a IR should not be optimistic at
the beginning of an interaction since otherwise an error could create a wrong
bad impression which is hard to recover. When more interactions are made, a
higher optimism increases the tolerance to noise of a IR strategist. As a result,
it suggests that h can be expressed as an increasing function of time.

4 Conclusions

Using the tools of EGT, we have addressed the role played by intention recog-
nition in the evolution of cooperation. In this work, we have shown, in a novel
way, the role of intention recognition for the emergence of cooperation within
the framework of the repeated Prisoner’s Dilemma. Intention recognition is per-
formed using a Bayesian Network model via computing mutual trusts between
the intention recognizers and their opponents. Given the broad spectrum of
problems which are addressed using this cooperative metaphor, our result in-
dicates how intention recognition can be pivotal in social dynamics. We have
shown that the intention recognition strategy prevails over the most success-
ful existent strategies (TFT, WSLS ) of the repeated PD, even when players
have a very limited memory. IR deals with AllD better than TFT – the best
known defector-dealer, and correct mistake better than WSLS – the best known
mistake-corrector (Nowak, 2006; Sigmund, 2010). As a result, a homogenous
population of IRs has a higher level of cooperation than the ones of WSLS s and
TFT s, resisting the invasion of other strategies.

In (Imhof et al., 2005), it has been shown that in absence of noise, in a
population of AllC s, AllDs and TFT s, the population spends most of the time
in a homogeneous state of TFT s. However, as we have shown here, it is not
the case if noise is present, especially under strong selection. In absence of
noise, IR behaves the as well as TFT. Moreover, IRs are selected by evolution
in the latter case where noise is present. We have shown that in a population of
AllC s, AllDs and IRs, the population spends most of the time in homogeneous
state of IRs in a broad range of scenarios and parameters, especially when the
intensity of selection is strong. We have also exhibited experimentally that in
a population where all the five strategies AllC, AllD, TFT, WSLS and IR are
present, IRs still prevail most of the time. Therefore, together with the fact that
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IRs can correct mistakes better than WSLS s and TFT s, the presence of IRs
would significantly increase the overall level of cooperation of the population.

Additionally, we have shown the role of a large memory size in recogniz-
ing/correcting errors. Having a greater memory size allows to build longer-term
mutual trusts/distrusts, and hence enables to better recognize erroneous moves.
It then enables to better tolerate of a selfish act made by cooperative trustful
individuals, and refuses to cooperate after an erroneous cooperation made by a
defective untrustworthy ones. Indeed, intention recognition gives rise to an in-
cipient mechanism of commitment formation, from which future behaviors may
be assessed and trust bonds established.

Overall, our work provides new insights on the complexity and beauty of
behavioral evolution driven by elementary forms of cognition.
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A Decision making with intention recognition

He we derive a simplified expression for intention recognizers’ decision making,
i.e., when to cooperate and when to defect. Recall that an IR cooperates iff
he recognizes that the co-player is more likely to cooperate than to defect, i.e.
p(I = C|O = o) ≥ p(I = D|O = o). From Eq. (5) (main text), we have that
the inequality holds if an only if

p(I = C,O = o) ≥ p(I = D,O = o)
⇐⇒ p(I = C,O = o, Tr = t) + p(I = C,O = o, Tr = f) ≥

p(I = D,O = o, Tr = t) + p(I = D,O = o, Tr = f)
⇐⇒ p(O = o|I = C)p(I = C|Tr = t)p(Tr = t)+

p(O = o|I = C)p(I = C|Tr = f)p(Tr = f) ≥
p(O = o|I = D)p(I = D|Tr = t)p(Tr = t)+
p(O = o|I = D)p(I = D|Tr = f)p(Tr = f)

⇐⇒ mtr [otr.h+ (1− otr)(1− h)] ≥ (1−mtr) [otr(1− h) + (1− otr)h]

where otr = P (Tr = t) and mtr = P (O = o|I = C).
Simplifying both sides we obtain

h(2.otr − 1) ≥ otr −mtr (9)

From Eqs. (3) and (4) (main text), (9) can be rewritten as

∆ = sP +Q ≥ 0 (10)

where s = 2h − 1 (0 ≤ s ≤ 1); P = nC(I,J ) − nD(I,J ) and Q = nC(J , I) −
nD(J , I).

In short, (10) provides a simple decision making model for the intention
recognizer, taking into account the co-player’s M recent moves as well as the
intention recognizer own’s M recent moves, linking by a factor of (2h−1) where
h is the optimistic level of the intention recognizer.

We have that −M ≤ P,Q ≤M . Let us look at some extreme cases.

• If Q = M , i.e. the co-player cooperates in all M recent steps, then ∆ > 0.
The IR cooperates in the next round.

• If Q = −M , i.e. the co-player defects in all M recent steps, then ∆ < 0.
The IR defects in the next round.

• If h = 1/2, then ∆ = Q. The IR only considers the co-player’s past actions
to decide his next move: if the co-player cooperated at least as much as
defected in the M recent rounds, then IR cooperates in the next round,
and defects otherwise. We henceforth consider h > 1/2: the IR also takes
its own moves into account.

B Memory-Two Intention Recognizers

To provide a simple mathematical analysis, let us consider the simplest case
where IR players has a very short memory M = 2. By following a similar
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method as described in (Sigmund, 2010), we derive the analytical payoff matrix
for AllC, AllD and IR in the presence of noise. Based on that, we then compare
analytically IR with other famous strategies, including TFT and WSLS.

To begin with, since s > 0, a memory-two IR decides his current move
depending on the state of his own and his co-player’s last two moves. There
are 16 possible states, forming by all the combinations of four possible game
situations (R,S, T, P ) in each of the last two encounters. We enumerate these
states by statei, with 1 ≤ i ≤ 16.

We consider stochastic strategies (f, l, q1, q2, ..., q16) ∈ [0, 1]18 where f and
l are the propensities to play C in the initial and second rounds, respectively,
and qi are propensities to play C after having been at statei, 1 ≤ i ≤ 16.

Let us assume that player 1 using (f1, s1, p1, p2, ..., p16) encounters a co-
player 2 using (f2, s2, q1, q2, ..., q16). We have a Markov chain in the state space
{state1, ..., state16}. The transition probabilities are given by the stochastic
matrix Q below. Note that one player’s S is the other player’s T .

Q =



p1q1 ... (1− p1)(1− q1) 0 ... 0 0
0 ... 0 p2q3 ... 0 ... 0
... ... ...
p5q9 ... (1− p5)(1− q9) 0 ... 0 0
.
.
.
0 ... 0 0 .... 0 ... (1− p16)(1− q16)


There are several zeros in the matrix. The state with the second compo-
nent X ∈ {R,S, T, P} can only go to the states with the first component
being X. For example, in the first row, state1, i.e. (R,R), can only go to
states with the first component being R, i.e. (R,R), (R,T ), (R,S ), (R,P) (i.e.
statei, 1 ≤ i ≤ 4).

The initial probabilities for the sixteen states are given by the vector

f ={f1f2s1s2, f1f2s1(1− s2), f1f2 (1− s1) s2, f1f2 (1− s1) (1− s2) ,

f1 (1− f2) s1s2, f1 (1− f2) s1 (1− s2) , f1 (1− f2) (1− s1) s2,

f1 (1− f2) (1− s1) (1− s2) , (1− f1) f2s1s2, (1− f1) f2s1 (1− s2) ,

(1− f1) f2 (1− s1) s2, (1− f1) f2 (1− s1) (1− s2) ,

(1− f1) (1− f2) s1s2, (1− f1) (1− f2) s1 (1− s2) ,

(1− f1) (1− f2) (1− s1) s2, (1− f1) (1− f2) (1− s1) (1− s2)}

In the next round, these probabilities are given by fQ, and in the round n by
fQn. We denote by g the vector {R,S, T, P,R, S, T, P,R, S, T, P,R, S, T, P},
then the payoff for player 1 in round n is given by

A(n) = g . fQn (11)

For ω < 1 the average payoff per round is (1− ω)
∑
wnA(n) (Sigmund, 2010),

i.e.,
(1− ω)g . f(Id− ωQ)−1 (12)

where Id is the identity matrix of size 16.
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B.1 Payoff Matrices in Presence of Noise

We now derive the payoff matrix for the 3-strategy game involving AllC, AllD
and IR in the presence of noise, i.e., an intended action (C or D) can fail
with probability ε ∈ [0, 1]. The strategies AllC and AllD are given by {1 −
ε, 1 − ε, 1 − ε, ...., 1 − ε}, {ε, ε, ε, ...., ε}, respectively. Strategy IR is given by
{1−ε, l, q1, ...., q16} where l = 2ε(1−ε) when playing with AllD and ε2 +(1−ε)2

when playing with AllC or IR 3; and qi = 1−ε for i ∈ {1..5, 7, 9..11, 13} and ε for
i ∈ {6, 8, 12, 14..16}. Note that X..Y , where X ≤ Y are two natural numbers,
denote the sequence X,X + 1, ..., Y . Basically, IR will cooperate in the next
round (with probability 1− ε) iff there is at least a mutual cooperation (i.e. R)
in the last two steps (i.e. i ∈ {1..5, 13}) or there is at least one T and no P (i.e.
i ∈ {7, 9..11}).

Considering the PD game with T = b, R = b− c, P = 0, S = −c, the payoff
matrix for AllC, AllD and IR, applying Eq. (12) for each pair of strategies, is
approximately given (where all terms of order O(ε2) have been ignored),

(b− c)(1− ε) −c+ (b+ c)ε Λ

b− bε− cε (b− c)ε ε(b(2+ω−ω2)−c)
1−εω

b(1−ε−εω2)−c(1−ε(2−ω+ω2))
1−εω2

ε(b−c(2+ω−ω2−ω3))
1−εω2(1+ω)

(b−c)(1+ε(−2+4ω+ω2+ω3))
1+εω(3+ω+ω2)


where Λ =

c(ω−1+ε(1−4ω+ω2))+b(ω−1+2ε(1−3ω+ω2))
1−ω+3εω−εω2

4.

By a similar method, we derive the payoff matrixes AllC, AllD and either
TFT or WSLS (the results for the general case of Prisoner’s Dilemma can be
found in (Imhof et al., 2007)). First, for AllC, AllD and WSLS

(b− c)(1− ε) bε− c(1− ε) c(−1 + ε)− b(1−ε)(1−(1−2ε)ω)

−1+(1−2ε)2ω

b(1− ε)− cε (b− c)ε −cε+
b(1+2ε2ω−ε(1+ω))

1+(1−2ε)2ω

Λ′
bε(1+(1−2ε)2ω)−c(1−ε−εω+2ε2ω)

1+(1−2ε)2ω
(b− c)(1− ε)

`
1− 2εω + 4ε2ω

´


where Λ′ = b(1− ε) + c(1−ε)(1−(1−2ε)ω)
−1+(1−2ε)2ω .

Now, for AllC, AllD and TFT, the payoff matrix reads (b− c)(1− ε) bε− c(1− ε) c(−1 + ε) + b
`
1 + 2ε2ω − ε(1 + ω)

´
b(1− ε)− cε (b− c)ε −cε− b(−1 + ε)(1 + (−1 + 2ε)ω)

Λ′′ bε− c(1− ε)(1− (1− 2ε)ω) (b−c)(1−ω+ε(−1+2ω))
1+(−1+2ε)ω


where Λ′′ = b(1− ε)− c

(
1− ε− εω + 2ε2ω

)
.

B.2 Comparing IR, WSLS and TFT

Let A(X,Y ) be the payoff of strategist X when playing with strategist Y (from
the payoff matrices). In the sequel we will show that, for b ≥ (1 + ω)c, ω >

3These can be easily seen from the fact that in the second round IR’s decision only depends
on what the co-player did in the first round (cf. (10)).

4This notation is added only for a better alignment.
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3/4 and ε < 1/3:

A(IR, IR) > A(WSLS,WSLS) > A(TFT, TFT )
A(AllD, IR) < A(AllD, TFT ) < A(AllD,WSLS)
A(IR,AllD) > A(TFT,AllD) > A(WSLS,AllD)

A(AllC,WSLS) < A(AllC, TFT ) < A(AllC, IR)
A(WSLS,AllC) > A(TFT,AllC) > A(IR,AllC)

The first condition always holds by the usual assumption in Donation game
b ≥ 2c; the second condition means the game is repeated at least 4 rounds.

B.2.1 TFT, WSLS, IR: Amongst themselves

Comparing the bottom rightmost element of each payoff matrix we have

A(WSLS ,WSLS )−A(TFT ,TFT ) =

(b− c)(1− 2ε)2εω(2ω − 2εω − 1)
1 + (−1 + 2ε)ω

> 0

(for small enough ε and big enough ω, namely ε < 1− 1
2ω )

A(IR, IR)−A(WSLS ,WSLS ) =

(b− c)ε
(
−1 + 3ω + ε

(
−3ω + 7ω2 + 3ω3 + 2ω4

))
1 + εω (3 + ω + ω2)

> 0

(all the terms of order O(ε3) in the numerator have been ignored)
In short, for ε < 1− 1

2ω we have

A(IR, IR) > A(WSLS ,WSLS ) > A(TFT ,TFT )

B.2.2 TFT, WSLS, IR: With AllD

A(AllD ,WSLS )−A(AllD ,TFT ) =
b(1− 2ε)2ω

(
ε+ ω − 3εω + 2ε2ω

)
1 + (1− 2ε)2ω

> 0

A(AllD ,TFT )−A(AllD , IR) =
b(1− ω)(1− 3ε− 2εω)

1− εω
> 0

(all the terms of order O(ε2) in the numerator have been ignored)

A(TFT,AllD)−A(WSLS,AllD) =
c(1− 2ε)2ω

(
ε+ ω − 3εω + 2ε2ω

)
1 + (1− 2ε)2ω

> 0

A(IR,AllD)−A(TFT,AllD) =
cεω3 + c(1− ω)

(
1− 3ε− εω − εω2

)
1− εω2(1 + ω)

> 0

(all the terms of order O(ε2) in the numerator have been ignored)
In short, it always holds that

A(AllD ,WSLS ) > A(AllD ,TFT ) > A(AllD , IR)

A(IR,AllD) > A(TFT ,AllD) > A(WSLS ,AllD)
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B.2.3 TFT, WSLS, IR: With AllC

A(AllC ,WSLS )−A(AllC ,TFT ) = −b(1−2ε)2εω(1+(1−2ε)ω)
1−(1−2ε)2ω < 0

A(AllC ,TFT )−A(AllC , IR) =

−ε
(
b(1− ω)(2ω − 1) + εω

(
b− bω2 + 4bω − 3c+ cω

))
1− ω + 3εω − εω2

< 0

(all the terms of order O(ε2) in the numerator have been ignored; ω > 3/4).

A(WSLS,AllC)−A(TFT,AllC) = c(1−2ε)2εω(1+ω−2εω)
1−(1−2ε)2ω > 0

A(TFT,AllC)−A(IR,AllC) =

ε
(
2cε2ω3 + c(2ω(1− ε)− 1) + ε

(
bω2 − cω2 − cω3

))
1− εω2

> 0

(for big enough ω and small enough ε, namely ε < 1− 1
2ω , and b ≥ (1 + ω)c)

In short, for b ≥ (1 + ω)c, ω > 3/4; and ε < 1/3 we have

A(AllC ,WSLS ) < A(AllC ,TFT ) < A(AllC , IR)

A(WSLS ,AllC ) > A(TFT ,AllC ) > A(IR,AllC )
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